182 research outputs found

    Tackling Higher Derivative Ghosts with the Euclidean Path Integral

    Get PDF
    An alternative to the effective field theory approach to treat ghosts in higher derivative theories is to attempt to integrate them out via the Euclidean path integral formalism. It has been suggested that this method could provide a consistent framework within which we might tolerate the ghost degrees of freedom that plague, among other theories, the higher derivative gravity models that have been proposed to explain cosmic acceleration. We consider the extension of this idea to treating a class of terms with order six derivatives, and find that for a general term the Euclidean path integral approach works in the most trivial background, Minkowski. Moreover we see that even in de Sitter background, despite some difficulties, it is possible to define a probability distribution for tensorial perturbations of the metric.Comment: 21 page

    What do we really know about Dark Energy?

    Full text link
    In this paper I discuss what we truly know about dark energy. I shall argue that up to date our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, CMB anisotropies and observations of baryon acoustic oscillations, they all simply tell us that the observed distance to a given redshift is larger than the one expected from a Friedmann Lemaitre universe with matter only and the locally measured Hubble parameter.Comment: invited talk at the meeting "Cosmological Tests of General Relativity" at the Kavli Royal Society Center for the Advancement of Science organized by Rachel Bean, Pedro Ferreira and Andy Taylor. 14p 2 figs. revised version: updated to match version in print in Phil. Trans. R. Soc.

    Stretching the Inflaton Potential with Kinetic Energy

    Get PDF
    Inflation near a maximum of the potential is studied when non-local derivative operators are included in the inflaton Lagrangian. Such terms can impose additional sources of friction on the field. For an arbitrary spacetime geometry, these effects can be quantified in terms of a local field theory with a potential whose curvature around the turning point is strongly suppressed. This implies that a prolonged phase of slow-roll inflation can be achieved with potentials that are otherwise too steep to drive quasi-exponential expansion. We illustrate this mechanism within the context of p-adic string theory.Comment: 4 page

    Perturbative quantization of two-dimensional space-time noncommutative QED

    Full text link
    Using the method of perturbative quantization in the first order approximation, we quantize a non-local QED-like theory including fermions and bosons whose interactions are described by terms containing higher order space-time derivatives. As an example, the two-dimensional space-time noncommutative QED (NC-QED) is quantized perturbatively up to O(e^2,\theta^3), where e is the NC-QED coupling constant and \theta is the noncommutativity parameter. The resulting modified Lagrangian density is shown to include terms consisting of first order time-derivative and higher order space-derivatives of the modified field variables that satisfy the ordinary equal-time commutation relations up to O(e^2,\theta^3. Using these commutation relations, the canonical current algebra of the modified theory is also derived.Comment: 22 pages, no figure

    Fading Gravity and Self-Inflation

    Get PDF
    We study the cosmology of a toy modified theory of gravity in which gravity shuts off at short distances, as in the fat graviton scenario of Sundrum. In the weak-field limit, the theory is perturbatively local, ghost-free and unitary, although likely suffers from non-perturbative instabilities. We derive novel self-inflationary solutions from the vacuum equations of the theory, without invoking scalar fields or other forms of stress energy. The modified perturbation equation expressed in terms of the Newtonian potential closely resembles its counterpart for inflaton fluctuations. The resulting scalar spectrum is therefore slightly red, akin to the simplest scalar-driven inflationary models. A key difference, however, is that the gravitational wave spectrum is generically not scale invariant. In particular the tensor spectrum can have a blue tilt, a distinguishing feature from standard inflation.Comment: 35 pages, 4 figures. v3: version to appear in Phys. Rev.

    Testing symmetries in effective models of higher derivative field theories

    Full text link
    Higher derivative field theories with interactions raise serious doubts about their validity due to severe energy instabilities. In many cases the implementation of a direct perturbation treatment to excise the dangerous negative-energies from a higher derivative field theory may lead to violations of Lorentz and other symmetries. In this work we study a perturbative formulation for higher derivative field theories that allows the construction of a low-energy effective field theory being a genuine perturbations over the ordinary-derivative theory and having a positive-defined Hamiltonian. We show that some discrete symmetries are recovered in the low-energy effective theory when the perturbative method to reduce the negative-energy degrees of freedom from the higher derivative theory is applied. In particular, we focus on the higher derivative Maxwell-Chern-Simons model which is a Lorentz invariant and parity-odd theory in 2+1 dimensions. The parity violation arises in the effective action of QED3_3 as a quantum correction from the massive fermionic sector. We obtain the effective field theory which remains Lorentz invariant, but parity invariant to the order considered in the perturbative expansion.Comment: 13 pages, Sec. III, additional references added, P symmetry revised, accepted for publication in PR

    Comment on "Canonical formalism for Lagrangians with nonlocality of finite extent"

    Get PDF
    We show by some counterexamples that Lagrangian sysytems with nonlocality of finite extent are not necessarily unstable.Comment: 8 pages, 1 figure Submitted to Phys. Rev.

    New type scalar fields for cosmic acceleration

    Get PDF
    We present a model where a non-conventional scalar field may act like dark energy leading to cosmic acceleration. The latter is driven by an appropriate field configuration, which result in an effective cosmological constant. The potential role of such a scalar in the cosmological constant problem is also discussed.Comment: 6 page

    Massive photons and Lorentz violation

    Full text link
    All quadratic translation- and gauge-invariant photon operators for Lorentz breakdown are included into the Stueckelberg Lagrangian for massive photons in a generalized \xi-gauge. The corresponding dispersion relation and tree-level propagator are determined exactly, and some leading-order results are derived. The question of how to include such Lorentz-violating effects into a perturbative quantum-field expansion is addressed. Applications of these results within Lorentz-breaking quantum field theories include the regularization of infrared divergences as well as the free propagation of massive vector bosons.Comment: 12 pages, 1 figur

    Effective Field Theory for Inflation

    Full text link
    The methods of effective field theory are used to study generic theories of inflation with a single inflaton field. For scalar modes, the leading corrections to the R{\cal R} correlation function are found to be purely of the kk-inflation type. For tensor modes the leading corrections to the correlation function arise from terms in the action that are quadratic in the curvature, including a parity-violating term that makes the propagation of these modes depend on their helicity. These methods are also briefly applied to non-generic theories of inflation with an extra shift symmetry, as in so-called ghost inflation.Comment: 14 pages, Latex, references added and minor additions and corrections mad
    • …
    corecore